Conformal Einstein Perfect Fluid Spacetimes
نویسندگان
چکیده
منابع مشابه
Characterisation of orthogonal perfect fluid cosmological spacetimes
We consider the general orthogonal metric separable in space and time variables in comoving coordinates. We then characterise perfect fluid models admitted by such a metric. It turns out that the homogeneous models can only be either FLRW or Bianchi I while the inhomogeneous ones can only admit G2 (two mutually as well as hypersurface orthogonal spacelike Killing vectors) isometry. The latter c...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملThe Chevreton Tensor and Einstein-Maxwell Spacetimes Conformal to Einstein Spaces
In this paper we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure-radiation type and that it restricts the spacetimes to Petrov types N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with...
متن کاملIsotropic Cosmological Singularities I. Polytropic Perfect Fluid Spacetimes
We consider the conformal Einstein equations for 1 ≤ γ ≤ 2 poly-tropic perfect fluid cosmologies which admit an isotropic singularity. For 1 < γ ≤ 2 it is shown that the Cauchy problem for these equations is well-posed, that is to say that solutions exist, are unique and depend smoothly on the data, with data consisting of simply the 3-metric of the singularity. The analogous result for γ = 1 (...
متن کاملIsothermal spherical perfect fluid model: Uniqueness and Conformal mapping
We prove the theorem: The necessary and sufficient condition for a spherically symmetric spacetime to represent an isothermal perfect fluid (barotropic equation of state with density falling off as inverse square of the curvature radius) distribution without boundary is that it is conformal to the “minimally” curved (gravitation only manifesting in tidal acceleration and being absent in particl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2011
ISSN: 1742-6596
DOI: 10.1088/1742-6596/314/1/012022